From 1 - 3 / 3
  • The University of Bath's meteor radar located at the Esrange Space Centre in Northern Sweden (67.88 N, 21.07E) , is an all-sky VHF (Very High Frequency) meteor radar commercially produced Skiymet system. It was operated by the University of Bath from October 1999 to October 2015 - albeit with some gaps in the data coverage. In October 2015, Esrange took over operation of the radar. Meteor detection and derived wind data from this instrument are available from July 2000 to June 2018. These were collected in support of a number of research projects - see linked Project records for further details. The radar detects radio scatter from the ionised trails of individual meteors drifting with the winds of the upper mesosphere, mesopause and lower thermosphere. A low-gain transmitter antenna is used to provide broad illumination of the sky. An array of five receiver antennas act as an interferometer to determine the azimuth and zenith angles of individual meteor echoes. Doppler measurements from each meteor determine the radial drift velocity and the meteor is assumed to be a passive tracer of atmospheric flow. The radar typically detects of order a few thousand meteors per day. These observations can be used to determine zonal and meridional winds in the mesosphere, mesopause and lower thermosphere at heights of about 80 – 100 km and with height and time resolutions of ~ 3 km and 2 hours. The radar produces daily “meteor position data” data files (mpd files) recording the details of each individual meteor echo. In normal operation a few thousand individual meteors are detected per day. See parameter list for details of available data. Recordings are made for each individual meteor detected allowing measurements of zonal and meridional wind speeds in the mesosphere and lower thermosphere to be obtained. Meteor count rates vary diurnally and with season, but are usually up to a few thousand meteors per day.

  • The University of Bath's meteor radar located at the British Antarctic Survey's Rothera base on Rothera Point, Adelaide Island, Antartica (67.57 S, 68.13 W), is an all-sky VHF (Very High Frequency) meteor radar commercially produced Skiymet system. Meteor detection and derived wind data from this instrument are available from 2005. These were collected in support of a number of research projects - see linked Project records for further details. The radar detects radio scatter from the ionised trails of individual meteors drifting with the winds of the upper mesosphere, mesopause and lower thermosphere. A low-gain transmitter antenna is used to provide broad illumination of the sky. An array of five receiver antennas act as an interferometer to determine the azimuth and zenith angles of individual meteor echoes. Doppler measurements from each meteor determine the radial drift velocity and the meteor is assumed to be a passive tracer of atmospheric flow. The radar typically detects of order a few thousand meteors per day. These observations can be used to determine zonal and meridional winds in the mesosphere, mesopause and lower thermosphere at heights of about 80 – 100 km and with height and time resolutions of ~ 3 km and 2 hours. The radar produces daily “meteor position data” data files (mpd files) recording the details of each individual meteor echo. In normal operation a few thousand individual meteors are detected per day. See parameter list for details of available data. Recordings are made for each individual meteor detected allowing measurements of zonal and meridional wind speeds in the mesosphere and lower thermosphere to be obtained. Meteor count rates vary diurnally and with season, but are usually up to a few thousand meteors per day. Note - there are additional data from 20040728 in the archive. No other data were obtained between that date and the start date for the dataset (20050212). The start date of 20050212 has been chosen in order to avoid potential confusion about missing data prior to that date.

  • The University of Bath's meteor radar located at the King Edward Point Magnetic Observatory (KEP, 54.2820 S, 36.4930 W) on South Georgia island in the South Atlantic , is an all-sky VHF (Very High Frequency) meteor radar commercially produced Skiymet system. It has been operational since 2016 providing meteor detection and derived wind data in support of the NERC funded South Georgia Wave (SG-WEX) and DRAGON-WEX: The Drake Passage and Southern Ocean Wave Experiments (see linked Project records for further details). The radar detects radio scatter from the ionised trails of individual meteors drifting with the winds of the upper mesosphere, mesopause and lower thermosphere. A low-gain transmitter antenna is used to provide broad illumination of the sky. An array of five receiver antennas act as an interferometer to determine the azimuth and zenith angles of individual meteor echoes. Doppler measurements from each meteor determine the radial drift velocity and the meteor is assumed to be a passive tracer of atmospheric flow. The radar typically detects of order a few thousand meteors per day. These observations can be used to determine zonal and meridional winds in the mesosphere, mesopause and lower thermosphere at heights of about 80 – 100 km and with height and time resolutions of ~ 3 km and 2 hours. The radar produces daily “meteor position data” data files (mpd files) recording the details of each individual meteor echo. In normal operation a few thousand individual meteors are detected per day. See parameter list for details of available data. Recordings are made for each individual meteor detected allowing measurements of zonal and meridional wind speeds in the mesosphere and lower thermosphere to be obtained. Meteor count rates vary diurnally and with season, but are usually up to a few thousand meteors per day.